A programme has been started to investigate photon properties that are not currently exploited in astronomical instruments, namely second- and higher-order coherence functions encoded in their arrival time, and the orbital angular momentum. This paper expounds the first results achieved in the study of a novel astronomical photometer capable of pushing time tagging towards the picosecond region. This conceptual device has been developed as a possible focal plane instrument for the future OverWhelmingly Large Telescope (OWL) of the European Southern Observatory. This instrument has been named QuantEYE, that is, the Quantum Eye of OWL.

Astronomical applications of quantum optics for extremely large telescopes

Da Deppo V;
2007

Abstract

A programme has been started to investigate photon properties that are not currently exploited in astronomical instruments, namely second- and higher-order coherence functions encoded in their arrival time, and the orbital angular momentum. This paper expounds the first results achieved in the study of a novel astronomical photometer capable of pushing time tagging towards the picosecond region. This conceptual device has been developed as a possible focal plane instrument for the future OverWhelmingly Large Telescope (OWL) of the European Southern Observatory. This instrument has been named QuantEYE, that is, the Quantum Eye of OWL.
2007
Istituto di fotonica e nanotecnologie - IFN
Angular momentum
Astrophysics
Function evaluation
Photometers
Space telescopes
Astronomical photometers
Orbital angular momentum
OverWhelmingly Large Telescope (OWL)
Time tagging
Quantum optics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/204591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact