We have analyzed the effects induced in different phospholipid planar bilayers by monosialoganglioside micelles containing the inonophore gramicidin D. The membrane conductance increases after the addition of GM1 micelles at various ionophore/ganglioside ratios. We believe this fact may be ascribed to gramicidin molecules that incorporate into the bilayer together with gangliosides. In the presence of micelles the mean lifetime and the amplitude of the gramicidin single channel did not present relevant modifications when dioleoylphosphatidylcholine or phosphatidylserine were used to form the bilayer. Calcium proved to trigger the interaction between phosphatidylethanolamine membranes and GM1 micelles containing gramicidin. In this case the ionic pore presents a longer lifetime and a lower amplitude with respect to pure gramicidin. We suggest that different properties developed by gramicidin may depend on structural organization of gangliosides when incorporated into the phospholipid bilayer.

GM1 micelles modify the transport properties of the ionophore gramicidin D in artificial planar bilayers

Gambale F;Marchetti C;Usai C;
1984

Abstract

We have analyzed the effects induced in different phospholipid planar bilayers by monosialoganglioside micelles containing the inonophore gramicidin D. The membrane conductance increases after the addition of GM1 micelles at various ionophore/ganglioside ratios. We believe this fact may be ascribed to gramicidin molecules that incorporate into the bilayer together with gangliosides. In the presence of micelles the mean lifetime and the amplitude of the gramicidin single channel did not present relevant modifications when dioleoylphosphatidylcholine or phosphatidylserine were used to form the bilayer. Calcium proved to trigger the interaction between phosphatidylethanolamine membranes and GM1 micelles containing gramicidin. In this case the ionic pore presents a longer lifetime and a lower amplitude with respect to pure gramicidin. We suggest that different properties developed by gramicidin may depend on structural organization of gangliosides when incorporated into the phospholipid bilayer.
1984
Istituto di Biofisica - IBF
gangliosides
ionophores
lipid bilayers
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/204995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact