The equilibrium adsorption of three nucleic acids: chromosomal DNA, supercoiled plasmid DNA, and 25S rRNA, on the clay minerals, montmorillonite (M) and kaolinite (K), were studied. Adsorption of the nucleic acid on the clays was rapid and maximal after 90 min of contact time. Chromosomal DNA was adsorbed to a greater extent than plasmid DNA and RNA, and the adsorption was also greater on M than on K. Adsorption isotherms were of the L type, and a plateau was reached with all the complexes, with the exception of chromosomal DNA adsorbed on M. To determine where nucleic acids are adsorbed on clay minerals and the nature of the interaction, complexes were studied by X-ray diffraction (X-RD), electron microscopy, and Fourier transform infrared (FT-IR) spectroscopy. X-RD showed that nucleic acids did not penetrate the clay, indicating that the adsorption occurred primarily on the external surfaces of clay particles, as also suggested by electron microscopy observations. FT-IR spectra of clay-tightly bound nucleic acid complexes showed absorption bands that indicate a variation of the nucleic acids status as a consequence of their adsorption on clay. Data obtained suggested that the formation of clay-nucleic acid complex could have an important role in the preservation of genetic material in primeval habitats.

Clay-nucleic acids complexes: characteristics and implications for the preservation of genetic material in primeval habitats

1999

Abstract

The equilibrium adsorption of three nucleic acids: chromosomal DNA, supercoiled plasmid DNA, and 25S rRNA, on the clay minerals, montmorillonite (M) and kaolinite (K), were studied. Adsorption of the nucleic acid on the clays was rapid and maximal after 90 min of contact time. Chromosomal DNA was adsorbed to a greater extent than plasmid DNA and RNA, and the adsorption was also greater on M than on K. Adsorption isotherms were of the L type, and a plateau was reached with all the complexes, with the exception of chromosomal DNA adsorbed on M. To determine where nucleic acids are adsorbed on clay minerals and the nature of the interaction, complexes were studied by X-ray diffraction (X-RD), electron microscopy, and Fourier transform infrared (FT-IR) spectroscopy. X-RD showed that nucleic acids did not penetrate the clay, indicating that the adsorption occurred primarily on the external surfaces of clay particles, as also suggested by electron microscopy observations. FT-IR spectra of clay-tightly bound nucleic acid complexes showed absorption bands that indicate a variation of the nucleic acids status as a consequence of their adsorption on clay. Data obtained suggested that the formation of clay-nucleic acid complex could have an important role in the preservation of genetic material in primeval habitats.
1999
Istituto di Bioscienze e Biorisorse
Clay-nucleic acids complexes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/205970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 79
social impact