This paper is focused on discrete scintillation imaging devices, made by using crystal arrays and metal-channel dynode Hamamatsu 1" and 2" square position sensitive photomultiplier tubes (PSPMT). These devices are particularly suitable for nuclear medicine based high-resolution Single Photon Emission Computed Tomography (SPECT) applications. A more adequate analytical model describing the light-output spread from a single crystal-pixel, was studied. Previously experimental data published by us were reviewed using this model. The parameter which describes the intrinsic pixel light-output spread was obtained using a 1D model-version, that adequately fits the measured single-event charge-strip integrals. Furthermore the intrinsic spread was found linearly dependent, in the examined experiments, on a crystal-pixel shape factor (defined as the ratio between the pixel-blind-surface-area to the pixel-volume). Finally, a simulation tool was developed on these basis, to predict and to optimize the imager response by evaluating the impact of each device component on the response.

A study of intrinsic crystal-pixel light-output spread for discrete scintillation gamma-ray imagers modeling

Soluri A;
2002

Abstract

This paper is focused on discrete scintillation imaging devices, made by using crystal arrays and metal-channel dynode Hamamatsu 1" and 2" square position sensitive photomultiplier tubes (PSPMT). These devices are particularly suitable for nuclear medicine based high-resolution Single Photon Emission Computed Tomography (SPECT) applications. A more adequate analytical model describing the light-output spread from a single crystal-pixel, was studied. Previously experimental data published by us were reviewed using this model. The parameter which describes the intrinsic pixel light-output spread was obtained using a 1D model-version, that adequately fits the measured single-event charge-strip integrals. Furthermore the intrinsic spread was found linearly dependent, in the examined experiments, on a crystal-pixel shape factor (defined as the ratio between the pixel-blind-surface-area to the pixel-volume). Finally, a simulation tool was developed on these basis, to predict and to optimize the imager response by evaluating the impact of each device component on the response.
2002
INGEGNERIA BIOMEDICA
0-7803-7636-6
PSPMT
medical imaging scintillation crystal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/207131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact