We study the average shape of a fluctuation of a time series x(t), which is the average value ?x(t)-x(0)?T before x(t) first returns at time T to its initial value x(0). For large classes of stochastic processes, we find that a scaling law of the form ?x(t)-x(0)?T=T?f(t/T) is obeyed. The scaling function f(s) is, to a large extent, independent of the details of the single increment distribution, while it encodes relevant statistical information on the presence and nature of temporal correlations in the process. We discuss the relevance of these results for Barkhausen noise in magnetic systems.

Average shape of a fluctuation: Universality in excursions of stochastic processes

Andrea Baldassarri;Francesca Colaiori;Claudio Castellano
2003

Abstract

We study the average shape of a fluctuation of a time series x(t), which is the average value ?x(t)-x(0)?T before x(t) first returns at time T to its initial value x(0). For large classes of stochastic processes, we find that a scaling law of the form ?x(t)-x(0)?T=T?f(t/T) is obeyed. The scaling function f(s) is, to a large extent, independent of the details of the single increment distribution, while it encodes relevant statistical information on the presence and nature of temporal correlations in the process. We discuss the relevance of these results for Barkhausen noise in magnetic systems.
2003
INFM (attivo dal 18/11/1923 al 31/12/2021)
File in questo prodotto:
File Dimensione Formato  
prod_247035-doc_65270.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 339.5 kB
Formato Adobe PDF
339.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/207739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 72
social impact