Alternative splicing of premessenger RNAs is a key step in the gene expression process, which allows the synthesis of different products from the same gene and contributes to increase the complexity of the proteome coded by a limited number of genes. Specialized high-throughput technologies (RNA-Seq, splicing-sensitive microarrays) aiming at analyzing alternative splicing in normal or pathological situations have allowed to make a promising step forward in basic and translational molecular oncology by identifying a variety of cancer-associated splicing variants. However, modification of alternative splicing is among the myriad of alterations present in cancer cells and whether splicing alteration is a cause or a consequence of cancer remains to be elucidated. The main focus of this special issue is to highlight some of the mechanisms involved in splicing alteration in cancer and to present new evidence demonstrating the involvement of alternative splicing alterations in different steps and aspects of cancer initiation and progression.
Alternative splicing and cancer
Biamonti G
2012
Abstract
Alternative splicing of premessenger RNAs is a key step in the gene expression process, which allows the synthesis of different products from the same gene and contributes to increase the complexity of the proteome coded by a limited number of genes. Specialized high-throughput technologies (RNA-Seq, splicing-sensitive microarrays) aiming at analyzing alternative splicing in normal or pathological situations have allowed to make a promising step forward in basic and translational molecular oncology by identifying a variety of cancer-associated splicing variants. However, modification of alternative splicing is among the myriad of alterations present in cancer cells and whether splicing alteration is a cause or a consequence of cancer remains to be elucidated. The main focus of this special issue is to highlight some of the mechanisms involved in splicing alteration in cancer and to present new evidence demonstrating the involvement of alternative splicing alterations in different steps and aspects of cancer initiation and progression.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


