We consider a neural network with adapting synapses whose dynamics can be analytically computed. The model is made of N neurons and each of them is connected to K input neurons chosen at random in the network. The synapses are n-state variables that evolve in time according to stochastic learning rules; a parallel stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed. In the limit N->? with K large and finite, the correlations of neurons and synapses can be neglected and the dynamics can be analytically calculated by flow equations for the macroscopic parameters of the system.

Stochastic Learning in a Neural Network with Adapting Synapses

G Pasquariello;
1997

Abstract

We consider a neural network with adapting synapses whose dynamics can be analytically computed. The model is made of N neurons and each of them is connected to K input neurons chosen at random in the network. The synapses are n-state variables that evolve in time according to stochastic learning rules; a parallel stochastic dynamics is assumed for neurons. Since the network maintains the same dynamics whether it is engaged in computation or in learning new memories, a very low probability of synaptic transitions is assumed. In the limit N->? with K large and finite, the correlations of neurons and synapses can be neglected and the dynamics can be analytically calculated by flow equations for the macroscopic parameters of the system.
1997
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/208188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact