The phase-separation kinetics of binary fluids in shear flow is studied numerically in the framework of the continuum convection-diffusion equation based on a Ginzburg-Landau free energy. Simulations are carried out for different temperatures both in d=2 and 3. Our results confirm the qualitative picture put forward by the large-Rr limit equations studied by Corberi et al. [Phys. Rev. Lett. 81, 3852 (1998)]. In particular, the structure factor is characterized by the presence of four peaks whose relative oscillations give rise to a periodic modulation of the behavior of the rheological indicators and of the average domains sizes. This peculiar pattern of the structure factor corresponds to the presence of domains with two characteristic thicknesses, whose relative abundance changes with time.

Phase separation of binary mixtures in shear flow: A numerical study

A Lamura
2000

Abstract

The phase-separation kinetics of binary fluids in shear flow is studied numerically in the framework of the continuum convection-diffusion equation based on a Ginzburg-Landau free energy. Simulations are carried out for different temperatures both in d=2 and 3. Our results confirm the qualitative picture put forward by the large-Rr limit equations studied by Corberi et al. [Phys. Rev. Lett. 81, 3852 (1998)]. In particular, the structure factor is characterized by the presence of four peaks whose relative oscillations give rise to a periodic modulation of the behavior of the rheological indicators and of the average domains sizes. This peculiar pattern of the structure factor corresponds to the presence of domains with two characteristic thicknesses, whose relative abundance changes with time.
2000
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact