The effect of shear flow on the phase-ordering dynamics of a binary mixture with field-dependent mobility is investigated. The problem is addressed in the context of the time-dependent Ginzburg-Landau equation with an external velocity term, studied in self-consistent approximation. Assuming a scaling ansatz for the structure factor, the asymptotic behavior of the observables in the scaling regime can be analytically calculated. All the observables show log-time periodic oscillations which we interpret as due to a cyclical mechanism of stretching and break-up of domains. These oscillations are damped as consequence of the vanishing of the mobility in the bulk phase.

Phase-ordering dynamics of binary mixtures with field-dependent mobility in shear flow

A Lamura;
2000

Abstract

The effect of shear flow on the phase-ordering dynamics of a binary mixture with field-dependent mobility is investigated. The problem is addressed in the context of the time-dependent Ginzburg-Landau equation with an external velocity term, studied in self-consistent approximation. Assuming a scaling ansatz for the structure factor, the asymptotic behavior of the observables in the scaling regime can be analytically calculated. All the observables show log-time periodic oscillations which we interpret as due to a cyclical mechanism of stretching and break-up of domains. These oscillations are damped as consequence of the vanishing of the mobility in the bulk phase.
2000
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact