A three parameters density model based on Corresponding States (CS) technique is proposed in this paper as a means of predicting the density of pure fluids on the whole P?T surface. The studied fluids belong to two conformal families of the new refrigerant fluids generation: the halogenated alkanes (HA) and the hydrofluoroethers (HFE). The new model is based on an original scaling factor parameter that is determined only on a saturated liquid density experimental value. Utilizing two accurate dedicated equations of state as references, the same structure of the Teja CS model is maintained, substituting the classical acentric factor with the new defined scaling parameter. Through this model, the density of the refrigerant fluids considered can be calculated on the whole surface with an accuracy level similar to that of the dedicated equations. The model is validated against experimental data for HFC refrigerants included fluoropropanes, fluorobutanes an fluoroethers. A comparison is also proposed with available density models regarded of high accuracy level.

A predictive corresponding states density model for pure refrigerants

Bobbo S
1999

Abstract

A three parameters density model based on Corresponding States (CS) technique is proposed in this paper as a means of predicting the density of pure fluids on the whole P?T surface. The studied fluids belong to two conformal families of the new refrigerant fluids generation: the halogenated alkanes (HA) and the hydrofluoroethers (HFE). The new model is based on an original scaling factor parameter that is determined only on a saturated liquid density experimental value. Utilizing two accurate dedicated equations of state as references, the same structure of the Teja CS model is maintained, substituting the classical acentric factor with the new defined scaling parameter. Through this model, the density of the refrigerant fluids considered can be calculated on the whole surface with an accuracy level similar to that of the dedicated equations. The model is validated against experimental data for HFC refrigerants included fluoropropanes, fluorobutanes an fluoroethers. A comparison is also proposed with available density models regarded of high accuracy level.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/208702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact