Pitch-bonded graphites are among the best known thermal insulators at sub-kelvin temperatures, but are very good conductors at higher temperatures. This makes them ideal for mechanical supports which must provide good thermal isolation at an operating temperature below 1 K, but must have good conductance at higher temperatures to aid in initially cooling down an instrument (a "passive heat switch"). One type of graphite, AGOT, has been known as having the lowest thermal conductivity below 1 K not only among graphites, but also compared with any other material. It is, however, no longer available. We have carried out thermal conductivity measurements at temperatures between 60 mK and 4 K on a proposed replacement, POCO AXM-5Q graphite, as well as a sample of AGOT graphite. Our measurements show that both graphites have a difference of about six orders of magnitude in conductivity between room temperature and 100 mK, but that AGOT graphite is not as good an insulator as previously believed. We conclude that AXM-5Q graphite is not only a suitable replacement for AGOT, but in fact is somewhat superior.

Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: Finding a replacement for AGOT graphite

Barucci M;
2009

Abstract

Pitch-bonded graphites are among the best known thermal insulators at sub-kelvin temperatures, but are very good conductors at higher temperatures. This makes them ideal for mechanical supports which must provide good thermal isolation at an operating temperature below 1 K, but must have good conductance at higher temperatures to aid in initially cooling down an instrument (a "passive heat switch"). One type of graphite, AGOT, has been known as having the lowest thermal conductivity below 1 K not only among graphites, but also compared with any other material. It is, however, no longer available. We have carried out thermal conductivity measurements at temperatures between 60 mK and 4 K on a proposed replacement, POCO AXM-5Q graphite, as well as a sample of AGOT graphite. Our measurements show that both graphites have a difference of about six orders of magnitude in conductivity between room temperature and 100 mK, but that AGOT graphite is not as good an insulator as previously believed. We conclude that AXM-5Q graphite is not only a suitable replacement for AGOT, but in fact is somewhat superior.
2009
Istituto Nazionale di Ottica - INO
Structural materials
Thermal conductivity
Instrumentation
Millikelvin temperatures
File in questo prodotto:
File Dimensione Formato  
prod_182705-doc_26120.pdf

non disponibili

Descrizione: Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: Finding a replacement for AGOT graphite
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 478.03 kB
Formato Adobe PDF
478.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/2089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact