In vivo absorption and reduced scattering spectra of the human calcaneous from 650 to 1000 nm were assessed using a laboratory system for time-resolved transmittance spectroscopy. Measurements were performed on the calcaneous of seven female volunteers ranging from 26 to 82 years of age. The analysis of the absorption spectra, using a linear combination of the key tissue absorbers (bone mineral, water, lipids, oxy- and deoxyhemoglobin), revealed a general decrease in bone mineral content and an increase in lipids with age, which is in agreement with the aging transformations that occur in bone tissues. The scattering spectra were less effective in detecting such changes in older subjects, showing only a minor decrease in the coefficient for these subjects. The capability to noninvasively quantify bone tissue composition suggests a possible use of optical biopsy for the diagnosis of bone pathologies such as osteoporosis, which are characterized by a progressive reduction and transformation of the mineral in the bone matrix.

Optical biopsy of bone tissue: a step towards the diagnosis of bone pathologies

A Pifferi;P Taroni;R Cubeddu
2004

Abstract

In vivo absorption and reduced scattering spectra of the human calcaneous from 650 to 1000 nm were assessed using a laboratory system for time-resolved transmittance spectroscopy. Measurements were performed on the calcaneous of seven female volunteers ranging from 26 to 82 years of age. The analysis of the absorption spectra, using a linear combination of the key tissue absorbers (bone mineral, water, lipids, oxy- and deoxyhemoglobin), revealed a general decrease in bone mineral content and an increase in lipids with age, which is in agreement with the aging transformations that occur in bone tissues. The scattering spectra were less effective in detecting such changes in older subjects, showing only a minor decrease in the coefficient for these subjects. The capability to noninvasively quantify bone tissue composition suggests a possible use of optical biopsy for the diagnosis of bone pathologies such as osteoporosis, which are characterized by a progressive reduction and transformation of the mineral in the bone matrix.
2004
Istituto di fotonica e nanotecnologie - IFN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20908
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 122
social impact