Emerging phase-change memory (PCM) technology for non-volatile applications presents many potential advantages in terms of scalability, endurance and program/read speed. While several integration issues have still to be solved before achieving volume-production stage, the fundamental physics of chalcogenide switching and phase-change behaviour has still to be comprehensively understood. This paper provides an in-depth analysis of the switching and programming transient in PCM cells. It is shown that the cell parasitic capacitance can lead to a marked current overshoot in the programming transient. As evidenced by experiments, this overshoot is able to melt and quench the active material as in a reset operation. The parasitic reset results in a series distribution of crystalline and amorphous phases after program. The analysis of array cell capacitance instead indicates that no parasitic reset is to be expected, allowing for a localized crystallization during program, as previously obtained by numerical simulations.

Switching and programming dynamics in phase-change memory cells

2005

Abstract

Emerging phase-change memory (PCM) technology for non-volatile applications presents many potential advantages in terms of scalability, endurance and program/read speed. While several integration issues have still to be solved before achieving volume-production stage, the fundamental physics of chalcogenide switching and phase-change behaviour has still to be comprehensively understood. This paper provides an in-depth analysis of the switching and programming transient in PCM cells. It is shown that the cell parasitic capacitance can lead to a marked current overshoot in the programming transient. As evidenced by experiments, this overshoot is able to melt and quench the active material as in a reset operation. The parasitic reset results in a series distribution of crystalline and amorphous phases after program. The analysis of array cell capacitance instead indicates that no parasitic reset is to be expected, allowing for a localized crystallization during program, as previously obtained by numerical simulations.
2005
Istituto di fotonica e nanotecnologie - IFN
Nonvolatile storage
Switching
Computer programming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact