Detection of ultraweak chemiluminescence (CL) emission from the surface of the organ is a sensitive and non-disruptive tool to evaluate the oxidative stress in rat heart. Indeed, an increased photon emission rate can be observed when cellular antioxidants such as glutathione or vitamin E are depleted, or when organic hydroperoxides are infused. We used CL recording to demonstrate in rat heart that: (i) different diets may lead to different heart sensitivity to an oxidative stress; and (ii) post-ischaemic reoxygenation induces an oxidative stress. CL emission induced by an oxidative stress is accompanied by an increased release of eicosanoids. However, while non-steroid anti-inflammatory drugs (aspirin, indomethacin and ibuprofen) prevented eicosanoid release, these compounds dramatically enhanced hydroperoxide-dependent CL. The nature of this phenomenon is still obscure, but the increase of steady-state concentration of excited species caused by anti-inflammatory drugs seems to be pathophysiologically relevant, since in all our experimental conditions tissue damage was proportional to CL emission rate.
Oxidative stress in the rat heart, studies on low-level chemiluminescence.
G Pelosi;A Benassi
1989
Abstract
Detection of ultraweak chemiluminescence (CL) emission from the surface of the organ is a sensitive and non-disruptive tool to evaluate the oxidative stress in rat heart. Indeed, an increased photon emission rate can be observed when cellular antioxidants such as glutathione or vitamin E are depleted, or when organic hydroperoxides are infused. We used CL recording to demonstrate in rat heart that: (i) different diets may lead to different heart sensitivity to an oxidative stress; and (ii) post-ischaemic reoxygenation induces an oxidative stress. CL emission induced by an oxidative stress is accompanied by an increased release of eicosanoids. However, while non-steroid anti-inflammatory drugs (aspirin, indomethacin and ibuprofen) prevented eicosanoid release, these compounds dramatically enhanced hydroperoxide-dependent CL. The nature of this phenomenon is still obscure, but the increase of steady-state concentration of excited species caused by anti-inflammatory drugs seems to be pathophysiologically relevant, since in all our experimental conditions tissue damage was proportional to CL emission rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.