We present a framework to design efficient and portable HPF applications which exploit a mixture of task and data parallelism. According to the framework proposed, data parallelism is restricted within HPF modules, and task parallelism is achieved by the concurrent execution of several data-parallel modules cooperating through COLTHPF, a coordination layer implemented on top of PVM. COLTHPF can be used independently of the HPF compilation system exploited, and it allows instances of cooperating HPF tasks to be created either statically or at run-time. We claim that COLTHPF can be exploited by means of a simple skeleton-based coordination language and associated compiler to easily express mixed data and task parallel applications runnable on either multicomputers or cluster of workstations. We used a physics application as a test case of our approach for mixing task and data parallelism, and we present the results of several experiments conducted on a cluster of Linux SMPs.

Mixed data and task parallelism with HPF and PVM

-
2000

Abstract

We present a framework to design efficient and portable HPF applications which exploit a mixture of task and data parallelism. According to the framework proposed, data parallelism is restricted within HPF modules, and task parallelism is achieved by the concurrent execution of several data-parallel modules cooperating through COLTHPF, a coordination layer implemented on top of PVM. COLTHPF can be used independently of the HPF compilation system exploited, and it allows instances of cooperating HPF tasks to be created either statically or at run-time. We claim that COLTHPF can be exploited by means of a simple skeleton-based coordination language and associated compiler to easily express mixed data and task parallel applications runnable on either multicomputers or cluster of workstations. We used a physics application as a test case of our approach for mixing task and data parallelism, and we present the results of several experiments conducted on a cluster of Linux SMPs.
2000
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Data parallelism
File in questo prodotto:
File Dimensione Formato  
prod_268038-doc_142058.pdf

solo utenti autorizzati

Descrizione: Mixed data and task parallelism with HPF and PVM
Tipologia: Versione Editoriale (PDF)
Dimensione 204.52 kB
Formato Adobe PDF
204.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/210969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact