Novel triphenylamine (TPA)-based organic dyes were synthesized and assessed for their performance in dye-sensitized solar cells (DSSCs). In the dyes considered the TPA group and the cyanoacetic acid have the role of electron-donor and -acceptor, respectively, whereas a thienyl-fluoro-phenyl-substituted was introduced as ?-linker to improve the dye performance in DSSCs. Experimental characterizations empasize that the presence of electron withdrawing substituents in the linker close to the electron-acceptor moiety leads to a more efficient intramolecular photoinduced charge transfer. In fact, photovoltaic experiments reveal that the DSSCs based on the thienyl-o-fluoro-phenyl substituted dyes yield a better solar-energy-to-electricity conversion efficiency.
Fluorine-Thiophene-Substituted Organic Dyes For Dye Sensitized Solar Cells
A Scrascia;C Carlucci;E Fabiano;A L Capodilupo;F Della Sala;G Gigli;G Ciccarella
2013
Abstract
Novel triphenylamine (TPA)-based organic dyes were synthesized and assessed for their performance in dye-sensitized solar cells (DSSCs). In the dyes considered the TPA group and the cyanoacetic acid have the role of electron-donor and -acceptor, respectively, whereas a thienyl-fluoro-phenyl-substituted was introduced as ?-linker to improve the dye performance in DSSCs. Experimental characterizations empasize that the presence of electron withdrawing substituents in the linker close to the electron-acceptor moiety leads to a more efficient intramolecular photoinduced charge transfer. In fact, photovoltaic experiments reveal that the DSSCs based on the thienyl-o-fluoro-phenyl substituted dyes yield a better solar-energy-to-electricity conversion efficiency.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.