The authors report on the fabrication of buried waveguides in both lithium niobate and periodically poled lithium niobate. First a low insertion loss waveguide is fabricated in z-cut lithium niobate using femtosecond laser waveguide inscription. To fabricate a waveguide exhibiting both low propagation and coupling losses, we used the multiscan fabrication technique to control the size of the waveguide cross section. We measured coupling losses of 1.1 dB/facet and propagation losses as low as 0.6 dBcm(-1). Optical waveguides have been also inscribed in periodically poled lithium niobate by femtosecond laser pulses with the same multiscan technique. Second harmonic generation experiments from a fundamental wavelength of 1567 nm demonstrate that the nonlinear optical coefficient in the waveguides is preserved, yielding a conversion efficiency of 18 % W-1.

Efficient second harmonic generation in femtosecond laser written optical waveguides on periodically poled lithium niobate

Osellame;Roberto;
2008

Abstract

The authors report on the fabrication of buried waveguides in both lithium niobate and periodically poled lithium niobate. First a low insertion loss waveguide is fabricated in z-cut lithium niobate using femtosecond laser waveguide inscription. To fabricate a waveguide exhibiting both low propagation and coupling losses, we used the multiscan fabrication technique to control the size of the waveguide cross section. We measured coupling losses of 1.1 dB/facet and propagation losses as low as 0.6 dBcm(-1). Optical waveguides have been also inscribed in periodically poled lithium niobate by femtosecond laser pulses with the same multiscan technique. Second harmonic generation experiments from a fundamental wavelength of 1567 nm demonstrate that the nonlinear optical coefficient in the waveguides is preserved, yielding a conversion efficiency of 18 % W-1.
2008
Istituto di fotonica e nanotecnologie - IFN
978-0-8194-7056-0
femtosecond
lithim niobate
periodically poled
second harmonic generation
ultrafast
micromachining
PULSES
OSCILLATOR
SILICON
LINBO3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/212447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact