We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings.

Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density

Lorenzo Rovigatti;Francesco Sciortino
2013

Abstract

We investigate, via numerical simulations, mean field, and density functional theories, the magnetic response of a dipolar hard sphere fluid at low temperatures and densities, in the region of strong association. The proposed parameter-free theory is able to capture both the density and temperature dependence of the ring-chain equilibrium and the contribution to the susceptibility of a chain of generic length. The theory predicts a nonmonotonic temperature dependence of the initial (zero field) magnetic susceptibility, arising from the competition between magnetically inert particle rings and magnetically active chains. Monte Carlo simulation results closely agree with the theoretical findings.
2013
Istituto dei Sistemi Complessi - ISC
Monte-Carlo
hard-spheres
File in questo prodotto:
File Dimensione Formato  
prod_208787-doc_47525.pdf

solo utenti autorizzati

Descrizione: Nonmonotonic Magnetic Susceptibility of Dipolar Hard-Spheres at Low Temperature and Density
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 244.85 kB
Formato Adobe PDF
244.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/212646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 85
social impact