In the cooperative, homodimeric hemoglobin from Scapharca inaequivalvis, HbI, the subunit interface is formed by the heme-carrying E and F helices and contains the only cysteine residue of the globin chain (Cys92, F2) in an area which changes from hydrophilic to hydrophobic upon oxygenation. Binding of organomercurials to HbI is cooperative and entails major quaternary rearrangements. The reaction of Cys92 with p-chloromercuri-benzoate (PMB) and p-nitro-o-chloromercuriphenol (PN), a sensitive reporter of the cysteine microenvironment at neutral pH values, has been followed in stopped flow experiments. Kinetic evidence for the cooperativity of mercurial binding has been obtained and the rate of the corresponding conformational transition has been estimated. As expected PN, but not PMB, is able to monitor the oxygen-linked change of the cysteine microenvironment. The modification of Cys92 with PN has unique functional effects. In PN-reacted HbI cooperativity is maintained, albeit to a different extent, depending on the ligation state of the protein during mercaptide formation. It may be envisaged that PN locks the protein into new, cooperative, quaternary structures stabilized by hydrogen bonding interactions between the ionized nitrophenol moiety and the contralateral subunit.

The homodimeric hemoglobin from Scapharca can be locked into new cooperative structures upon reaction of Cys92, located at the subunit interface, with organomercurials.

Colotti G;Boffi A;Verzili D;Chiancone E
1992

Abstract

In the cooperative, homodimeric hemoglobin from Scapharca inaequivalvis, HbI, the subunit interface is formed by the heme-carrying E and F helices and contains the only cysteine residue of the globin chain (Cys92, F2) in an area which changes from hydrophilic to hydrophobic upon oxygenation. Binding of organomercurials to HbI is cooperative and entails major quaternary rearrangements. The reaction of Cys92 with p-chloromercuri-benzoate (PMB) and p-nitro-o-chloromercuriphenol (PN), a sensitive reporter of the cysteine microenvironment at neutral pH values, has been followed in stopped flow experiments. Kinetic evidence for the cooperativity of mercurial binding has been obtained and the rate of the corresponding conformational transition has been estimated. As expected PN, but not PMB, is able to monitor the oxygen-linked change of the cysteine microenvironment. The modification of Cys92 with PN has unique functional effects. In PN-reacted HbI cooperativity is maintained, albeit to a different extent, depending on the ligation state of the protein during mercaptide formation. It may be envisaged that PN locks the protein into new, cooperative, quaternary structures stabilized by hydrogen bonding interactions between the ionized nitrophenol moiety and the contralateral subunit.
1992
Istituto di Biologia e Patologia Molecolari - IBPM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/212855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact