We have explored whether overexpression of the bcl-2 gene 'per se' can promote regeneration of retinal ganglion cells (RGCs) after optic nerve axotomy in developing transgenic mice. We have used newborn mice (postnatal day 5) because at this age the central nervous system environment is more permissive for regeneration than in adults, thus, maximizing the probability to detect a regeneration-promoting role of bcl-2. Thirty days postsurgery we found that in mice overexpressing bcl-2, a high proportion of retinal ganglion cells survived and also that some fibers in the proximal stump of the optic nerve were preserved. However, the optic nerve of transgenic mice does not show signs of regeneration. On the contrary, in the presence of Schwann cell transplants, there are signs of fiber regrowth. Indeed, many axonal terminals cross the crush site and reach the chiasm in both wild type and transgenic mice nerves. These results suggest that bcl-2 overexpression is not sufficient 'per se' to increase the regenerative potentiality of axotomized RGCs.

Bcl-2-overexpression per se does not promote regeneration of neonatal crushed optic fibers

Lodovichi C;Cenni MC;
2001

Abstract

We have explored whether overexpression of the bcl-2 gene 'per se' can promote regeneration of retinal ganglion cells (RGCs) after optic nerve axotomy in developing transgenic mice. We have used newborn mice (postnatal day 5) because at this age the central nervous system environment is more permissive for regeneration than in adults, thus, maximizing the probability to detect a regeneration-promoting role of bcl-2. Thirty days postsurgery we found that in mice overexpressing bcl-2, a high proportion of retinal ganglion cells survived and also that some fibers in the proximal stump of the optic nerve were preserved. However, the optic nerve of transgenic mice does not show signs of regeneration. On the contrary, in the presence of Schwann cell transplants, there are signs of fiber regrowth. Indeed, many axonal terminals cross the crush site and reach the chiasm in both wild type and transgenic mice nerves. These results suggest that bcl-2 overexpression is not sufficient 'per se' to increase the regenerative potentiality of axotomized RGCs.
2001
bcl 2 cell death regeneration crush neonatal mice
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/213141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact