The miscibility of poly(propylene succinate)/poly(propylene adipate) blends was investigated by means of DSC, WAXS and NMR techniques. Poly(propylene succinate) and poly(propylene adipate) were found to be completely immiscible in as blended-state. The miscibility changes upon extended mixing at elevated temperature: for enough long mixing time, the original two phases gradually merged into a single one because of transesterification reactions. The NMR analysis showed that the transesterifications led to block copolymers whose average sequence length decreased as the mixing time is increased at a fixed temperature. Upon very long mixing time (150 min), all PPS and PPA chains are fully transformed into a random copolymer characterized by a single amorphous phase. (C) 2009 Elsevier Ltd. All rights reserved.
Miscibility of biodegradable poly(propylene succinate)/poly(propylene adipate) blends: Effect of the transesterification reactions
Gazzano M;
2009
Abstract
The miscibility of poly(propylene succinate)/poly(propylene adipate) blends was investigated by means of DSC, WAXS and NMR techniques. Poly(propylene succinate) and poly(propylene adipate) were found to be completely immiscible in as blended-state. The miscibility changes upon extended mixing at elevated temperature: for enough long mixing time, the original two phases gradually merged into a single one because of transesterification reactions. The NMR analysis showed that the transesterifications led to block copolymers whose average sequence length decreased as the mixing time is increased at a fixed temperature. Upon very long mixing time (150 min), all PPS and PPA chains are fully transformed into a random copolymer characterized by a single amorphous phase. (C) 2009 Elsevier Ltd. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.