In this paper we consider the evolutionary Particle Swarm Optimization (PSO) algorithm, for the minimization of a computationally costly nonlinear function, in global optimization frameworks. We study a reformulation of the standard iteration of PSO (Clerc and Kennedy in IEEE Trans Evol Comput 6(1) 2002), (Kennedy and Eberhart in IEEE Service Center, Piscataway, IV: 1942-1948, 1995) into a linear dynamic system. We carry out our analysis on a generalized PSO iteration, which includes the standard one proposed in the literature. We analyze three issues for the resulting generalized PSO: first, for any particle we give both theoretical and numerical evidence on an efficient choice of the starting point. Then, we study the cases in which either deterministic and uniformly randomly distributed coefficients are considered in the scheme. Finally, some convergence analysis is also provided, along with some necessary conditions to avoid diverging trajectories. The results proved in the paper can be immediately applied to the standard PSO iteration

Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization

Campana Emilio Fortunato;
2010

Abstract

In this paper we consider the evolutionary Particle Swarm Optimization (PSO) algorithm, for the minimization of a computationally costly nonlinear function, in global optimization frameworks. We study a reformulation of the standard iteration of PSO (Clerc and Kennedy in IEEE Trans Evol Comput 6(1) 2002), (Kennedy and Eberhart in IEEE Service Center, Piscataway, IV: 1942-1948, 1995) into a linear dynamic system. We carry out our analysis on a generalized PSO iteration, which includes the standard one proposed in the literature. We analyze three issues for the resulting generalized PSO: first, for any particle we give both theoretical and numerical evidence on an efficient choice of the starting point. Then, we study the cases in which either deterministic and uniformly randomly distributed coefficients are considered in the scheme. Finally, some convergence analysis is also provided, along with some necessary conditions to avoid diverging trajectories. The results proved in the paper can be immediately applied to the standard PSO iteration
2010
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Global optimization
Evolutionary optimization
Particle Swarm Optimization
Dynamic linear system
Convergence analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/214164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 42
social impact