In this paper we investigate the effective design of an appropriate neural network model for time series prediction based on an evolutionary approach. In particular, the Breeder Genetic Algorithms are considered to face contemporaneously the optimization of (i) the design of a neural network architecture and (ii) the choice of the best learning method. The effectiveness of the approach proposed is evaluated on a standard benchmark for prediction models, the Mackey-Glass series.

Optimizing Neural Networks for Time Series Prediction

DE FALCO I;E TARANTINO
1999

Abstract

In this paper we investigate the effective design of an appropriate neural network model for time series prediction based on an evolutionary approach. In particular, the Breeder Genetic Algorithms are considered to face contemporaneously the optimization of (i) the design of a neural network architecture and (ii) the choice of the best learning method. The effectiveness of the approach proposed is evaluated on a standard benchmark for prediction models, the Mackey-Glass series.
1999
978-1-85233-062-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/215717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact