This paper aims to study the effect of multiwall carbon nanotubes (MWCNTs) on the photo-degradation behavior of polylactic acid (PLA) composites exposed to UV-light. The MWCNT dispersion state within the PLA matrix was analyzed by electrical conductivity measurements. From gel permeation chromatography it was verified that the rate of photo-degradation of PLA/MWCNT composites is lower than that of the unfilled PLA. The surface morphology modifications induced by UV have been analyzed by optical and scanning electron microscopy. Thermal analysis revealed an increase in the polymer crystallinity and a decrease in the degradation temperature during the UV treatment. The mechanical properties (Young's modulus and tensile strength at the yield point) were significantly increased by the addition of MWCNTs. However, the tensile strength and strain to failure slightly decreased with an increase in irradiation time. This complex behavior was attributed to a molecular reorganization in the first period of photo-aging followed by a severe macromolecular chain scission.
Photo-oxidative stabilization of carbon nanotubes on polylactic acid
Sorrentino A
2013
Abstract
This paper aims to study the effect of multiwall carbon nanotubes (MWCNTs) on the photo-degradation behavior of polylactic acid (PLA) composites exposed to UV-light. The MWCNT dispersion state within the PLA matrix was analyzed by electrical conductivity measurements. From gel permeation chromatography it was verified that the rate of photo-degradation of PLA/MWCNT composites is lower than that of the unfilled PLA. The surface morphology modifications induced by UV have been analyzed by optical and scanning electron microscopy. Thermal analysis revealed an increase in the polymer crystallinity and a decrease in the degradation temperature during the UV treatment. The mechanical properties (Young's modulus and tensile strength at the yield point) were significantly increased by the addition of MWCNTs. However, the tensile strength and strain to failure slightly decreased with an increase in irradiation time. This complex behavior was attributed to a molecular reorganization in the first period of photo-aging followed by a severe macromolecular chain scission.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


