This paper investigates scalable implementations of out-of-core I/O-intensive Data Mining algorithms on affordable parallel architectures, such as clusters of w orkstations. In order to validate our approach, the K-means algorithm, a well known DM Clustering algorithm, was used as a test case.

Implementation issues in the design of I/O intensive data mining applications on clusters of workstations

Baraglia R;Laforenza D;Orlando S;Palmerini P;Perego R
2000

Abstract

This paper investigates scalable implementations of out-of-core I/O-intensive Data Mining algorithms on affordable parallel architectures, such as clusters of w orkstations. In order to validate our approach, the K-means algorithm, a well known DM Clustering algorithm, was used as a test case.
2000
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
3-540-67442-X
I/O
Data mining
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/215796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact