The effectiveness of modeling atmospheric ice crystals of varying aspect ratios as clusters of spheres is investigated by calculation of the backscattered intensity in the millimeter-wave range by the transition matrix approach. Both single crystals and dispersions with a few choices of the orientational distribu- tion are considered. Our calculations reproduce the features of the backscattered intensity that are due to the overall symmetry of the crystals and yield results in agreement with analogous calculations performed by other authors within the framework of the discrete dipole approximation.
Backscattered intensity from model atmospheric ice crystals in the millimeter wave range
2001
Abstract
The effectiveness of modeling atmospheric ice crystals of varying aspect ratios as clusters of spheres is investigated by calculation of the backscattered intensity in the millimeter-wave range by the transition matrix approach. Both single crystals and dispersions with a few choices of the orientational distribu- tion are considered. Our calculations reproduce the features of the backscattered intensity that are due to the overall symmetry of the crystals and yield results in agreement with analogous calculations performed by other authors within the framework of the discrete dipole approximation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


