Given a p times p Schur function S, we consider the problem of constructing a symmetric Darlington synthesis of minimal size. This amounts essentially to finding a stable all-pass square extension of S of minimal size. The characterization is done in terms of the multiplicities of the zeros. As a special case we obtain conditions for symmetric Darlington synthesis to be possible without increasing the McMillan degree for a symmetric rational contractive matrix which is strictly contractive in the right half-plane. This technique immediately extends to the case where, allowing for a higher dimension of the extension, we require no increase in the McMillan degree

Minimal symmetric Darlington synthesis: a frequency domain approach

Gombani A;
2006

Abstract

Given a p times p Schur function S, we consider the problem of constructing a symmetric Darlington synthesis of minimal size. This amounts essentially to finding a stable all-pass square extension of S of minimal size. The characterization is done in terms of the multiplicities of the zeros. As a special case we obtain conditions for symmetric Darlington synthesis to be possible without increasing the McMillan degree for a symmetric rational contractive matrix which is strictly contractive in the right half-plane. This technique immediately extends to the case where, allowing for a higher dimension of the extension, we require no increase in the McMillan degree
2006
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
INGEGNERIA BIOMEDICA
1-4244-0171-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/215959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact