The high atomic number of Niobium (Z=41) can be exploited to develop a high efficiency superconducting gamma-ray detector based on a novel detection principle, namely, the interaction of a single gamma-ray photon with Abrikosov vortices trapped inside a Niobium bulk absorber. To study the feasibility of this principle, Niobium type Josephson tunnel junctions with the Aluminium oxide as a tunnel barrier and with a thick (0.3 mm) Niobium base electrode have been fabricated. The devices have been tested at T = 4.2 K in terms of the current-voltage characteristic and of the magnetic field dependence of the Josephson critical current. The feasibility of the detection principle has been tested under X-ray irradiation from the 55Fe source. The time dependence of the Josephson critical current of the junction with trapped Abrikosov vortices has been recorded without and with X-ray irradiation. The data analysis of obtained experimental curves has confirmed the effect of the X-ray photon absorption on the Josephson critical current caused by jumping of Abrikosov vortices.

Detection of X - ray photons by Niobium Josephson tunnel junction with trapped Abrikosov vortices

C Camerlingo
2013

Abstract

The high atomic number of Niobium (Z=41) can be exploited to develop a high efficiency superconducting gamma-ray detector based on a novel detection principle, namely, the interaction of a single gamma-ray photon with Abrikosov vortices trapped inside a Niobium bulk absorber. To study the feasibility of this principle, Niobium type Josephson tunnel junctions with the Aluminium oxide as a tunnel barrier and with a thick (0.3 mm) Niobium base electrode have been fabricated. The devices have been tested at T = 4.2 K in terms of the current-voltage characteristic and of the magnetic field dependence of the Josephson critical current. The feasibility of the detection principle has been tested under X-ray irradiation from the 55Fe source. The time dependence of the Josephson critical current of the junction with trapped Abrikosov vortices has been recorded without and with X-ray irradiation. The data analysis of obtained experimental curves has confirmed the effect of the X-ray photon absorption on the Josephson critical current caused by jumping of Abrikosov vortices.
2013
Superconductivitu
Abrikosov vortices
photon detector
Josephson effect
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/216291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact