To determine whether alterations in insulin and/or glucagon secretion play an important role in stimulating glucose production (Ra) during intense but submaximal exercise, we studied six untrained subjects during 30 min of cycling at 80% of peak oxygen uptake on two occasions: once under control conditions and once when alterations in insulin and glucagon secretion were prevented with the use of the pancreatic islet clamp technique. In the latter experiments, glucose was infused during exercise to match glycemia with control levels. Glucose kinetics were measured in both trials using a primed, continuous infusion of [6,6-2H]glucose. In the control trial, glucose Ra rose from 11.9 +/- 0.8 mumol.min-1.kg-1 at rest to 42.5 +/- 4.3 mumol.min-1.kg-1 by the end of exercise. A similar increment was observed in the islet clamp experiments, with endogenous Ra peaking at 37.2 +/- 7.9 mumol.min-1.kg-1. This was true even through glucagon concentration did not change from basal and insulin concentration actually rose (the latter apparently due to a decrease in insulin clearance during intense exercise). Thus neither decrements in insulin or increments in glucagon are apparently required to stimulate glucose Ra under the present conditions. Because epinephrine levels rose only slightly, it appears that either neurally released norepinephrine or some other, as yet unidentified, factor is responsible for stimulating glucose Ra during intense but submaximal exercise.

Regulation of glucose production during exercise at 80% of VO2peak in untrained humans

Gastaldelli A;
1997

Abstract

To determine whether alterations in insulin and/or glucagon secretion play an important role in stimulating glucose production (Ra) during intense but submaximal exercise, we studied six untrained subjects during 30 min of cycling at 80% of peak oxygen uptake on two occasions: once under control conditions and once when alterations in insulin and glucagon secretion were prevented with the use of the pancreatic islet clamp technique. In the latter experiments, glucose was infused during exercise to match glycemia with control levels. Glucose kinetics were measured in both trials using a primed, continuous infusion of [6,6-2H]glucose. In the control trial, glucose Ra rose from 11.9 +/- 0.8 mumol.min-1.kg-1 at rest to 42.5 +/- 4.3 mumol.min-1.kg-1 by the end of exercise. A similar increment was observed in the islet clamp experiments, with endogenous Ra peaking at 37.2 +/- 7.9 mumol.min-1.kg-1. This was true even through glucagon concentration did not change from basal and insulin concentration actually rose (the latter apparently due to a decrease in insulin clearance during intense exercise). Thus neither decrements in insulin or increments in glucagon are apparently required to stimulate glucose Ra under the present conditions. Because epinephrine levels rose only slightly, it appears that either neurally released norepinephrine or some other, as yet unidentified, factor is responsible for stimulating glucose Ra during intense but submaximal exercise.
1997
Istituto di Fisiologia Clinica - IFC
Adult
Blood Glucose/analysis
*Exercise
Female
Glucose/*biosynthesis
File in questo prodotto:
File Dimensione Formato  
prod_212658-doc_62074.pdf

non disponibili

Descrizione: Regulation of glucose production during exercise at 80% of hpeak in untrained humans
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/216392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 19
social impact