We theoretically analyze the Bragg spectroscopic interferometer of two spatially separated atomic Bose-Einstein condensates that was experimentally realized by Saba et al. [Science 2005 v307 p1945] by continuously monitoring the relative phase evolution. Even though the atoms in the light-stimulated Bragg scattering interact with intense coherent laser beams, we show that the phase is created by quantum measurement-induced back-action on the homodyne photo-current of the lasers, opening possibilities for quantum-enhanced interferometric schemes. We identify two regimes of phase evolution: a running phase regime which was observed in the experiment of Saba et al., that is sensitive to an energy offset and suitable for an interferometer, and a trapped phase regime, that can be insensitive to applied forces and detrimental to interferometric applications.

Bragg spectroscopic interferometer and quantum measurement-induced correlations in atomic Bose-Einstein condensates

2012

Abstract

We theoretically analyze the Bragg spectroscopic interferometer of two spatially separated atomic Bose-Einstein condensates that was experimentally realized by Saba et al. [Science 2005 v307 p1945] by continuously monitoring the relative phase evolution. Even though the atoms in the light-stimulated Bragg scattering interact with intense coherent laser beams, we show that the phase is created by quantum measurement-induced back-action on the homodyne photo-current of the lasers, opening possibilities for quantum-enhanced interferometric schemes. We identify two regimes of phase evolution: a running phase regime which was observed in the experiment of Saba et al., that is sensitive to an energy offset and suitable for an interferometer, and a trapped phase regime, that can be insensitive to applied forces and detrimental to interferometric applications.
2012
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/217149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact