The excited states of (dA)4 oligonucleotides (A=adenine), including the phosphoribose backbone, were studied in water at a fully quantum mechanical level, providing an atomistic description of the main decay paths and a comprehensive interpretation of the experimental data (see picture). After absorption to exciton states delocalized over multiple A bases, the behavior of the excited state is ruled by the interplay of a number of species responsible for different spectral features.

Interplay between "neutral" and "charge-transfer"excimers rules the excited state decay in adenine-rich polynucleotides

Improta R;
2011

Abstract

The excited states of (dA)4 oligonucleotides (A=adenine), including the phosphoribose backbone, were studied in water at a fully quantum mechanical level, providing an atomistic description of the main decay paths and a comprehensive interpretation of the experimental data (see picture). After absorption to exciton states delocalized over multiple A bases, the behavior of the excited state is ruled by the interplay of a number of species responsible for different spectral features.
2011
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
computational chemistry
DNA
excited states
nucleobases
oligonucleotides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/217219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact