Changes in urban climate greatly affect cities' liveability and human health. The main factor altering urban climate is recognized to be the increase in GHGs concentration (mainly carbon dioxide) due to human activities in urban areas (such as traffic, domestic heating/cooling, etc.). To reduce the impact of urbanization on climate, it is crucial to monitor the urban environment and to develop planning strategies, which could help in reducing carbon emissions. A new project just started in Italy with the purpose of providing new tools,methodologies, and strategies to local and regional authorities of the Island of Sardinia for reducing carbon emissions of cities. The general aim of the project is to develop a methodology framework, including inventory tools, direct measurements and models, for identifying and planning future urban low carbon scenarios. The project aims to quantitatively estimate the urban metabolism components and for this reason an Eddy Covariance station will be used to monitor long-term energy, water, and carbon fluxes over a Sardinian city. An inventory approach will also allow for monitoring of the air quality and identification of the main emissions sources. An innovative point of the project is the development of a modeling system to study the impact of different urban planning strategies on carbon emission rates. At this stage, interactions with local stakeholders are crucial to understand the real needs of the city in terms of future development and to identify the scenarios to test. Four models are involved: 1) the land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) will be calibrated to simulate the urban metabolism components at local scale 2) a Cellular Automata model will simulate the urban land-use dynamics for the next 10-20 years 3) a transportation model will estimate the variation of the transportation network load 4) the coupled model WRF-ACASA will simulate the urban metabolism components for the entire municipality. In this way, the impact of changes in land use demand and transportation network load in the city will be tested at both local and regional scale. At the end of the project in 2014, results will provide local authorities with detailed information about the temporal and spatial dynamics of CO2 emissions and the main environmental factors affecting emission rates. Results will also help in assessing the sustainability and the applicability of the identified planning strategies in mitigating CO2 emissions. In addition, stakeholders will have information to implement localenvironmental policies to meet the strategic objectives identified in the framework of Europe 2020. A detailed description of project activities and methods will be reported here.
A new urban site to develop future sustainable planning alternatives
Casula M;Duce P
2013
Abstract
Changes in urban climate greatly affect cities' liveability and human health. The main factor altering urban climate is recognized to be the increase in GHGs concentration (mainly carbon dioxide) due to human activities in urban areas (such as traffic, domestic heating/cooling, etc.). To reduce the impact of urbanization on climate, it is crucial to monitor the urban environment and to develop planning strategies, which could help in reducing carbon emissions. A new project just started in Italy with the purpose of providing new tools,methodologies, and strategies to local and regional authorities of the Island of Sardinia for reducing carbon emissions of cities. The general aim of the project is to develop a methodology framework, including inventory tools, direct measurements and models, for identifying and planning future urban low carbon scenarios. The project aims to quantitatively estimate the urban metabolism components and for this reason an Eddy Covariance station will be used to monitor long-term energy, water, and carbon fluxes over a Sardinian city. An inventory approach will also allow for monitoring of the air quality and identification of the main emissions sources. An innovative point of the project is the development of a modeling system to study the impact of different urban planning strategies on carbon emission rates. At this stage, interactions with local stakeholders are crucial to understand the real needs of the city in terms of future development and to identify the scenarios to test. Four models are involved: 1) the land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) will be calibrated to simulate the urban metabolism components at local scale 2) a Cellular Automata model will simulate the urban land-use dynamics for the next 10-20 years 3) a transportation model will estimate the variation of the transportation network load 4) the coupled model WRF-ACASA will simulate the urban metabolism components for the entire municipality. In this way, the impact of changes in land use demand and transportation network load in the city will be tested at both local and regional scale. At the end of the project in 2014, results will provide local authorities with detailed information about the temporal and spatial dynamics of CO2 emissions and the main environmental factors affecting emission rates. Results will also help in assessing the sustainability and the applicability of the identified planning strategies in mitigating CO2 emissions. In addition, stakeholders will have information to implement localenvironmental policies to meet the strategic objectives identified in the framework of Europe 2020. A detailed description of project activities and methods will be reported here.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


