We present an alternative approach for controlling the water adhesion on solid superhydrophobic surfaces by varying their coverage with a spray coating technique. In particular, micro-, submicro-, and nanorough surfaces were developed starting from photolithographically tailored SU-8 micropillars that were used as substrates for spraying first poly(tetrafluoroethylene) submicrometer particles and subsequently iron oxide nanoparticles. The sprayed particles serve to induce surface submicrometer and nanoscale roughness, rendering the SU-8 patterns superhydrophobic (apparent contact angle values of more than 150A degrees), and also to tune the water adhesion between extreme states, turning the surfaces from "non-sticky" to "sticky" while preserving their superhydrophobicity. The influence of the chemical properties and of the geometrical characteristics of the functionalized surfaces on the wetting properties is discussed within the frame of the theory. This simple method can find various applications in the fabrication of microfluidic devices, smart surfaces, and biotechnological and antifouling materials.

Control of the water adhesion on hydrophobic micropillars by spray coating technique

Cozzoli P D;
2013

Abstract

We present an alternative approach for controlling the water adhesion on solid superhydrophobic surfaces by varying their coverage with a spray coating technique. In particular, micro-, submicro-, and nanorough surfaces were developed starting from photolithographically tailored SU-8 micropillars that were used as substrates for spraying first poly(tetrafluoroethylene) submicrometer particles and subsequently iron oxide nanoparticles. The sprayed particles serve to induce surface submicrometer and nanoscale roughness, rendering the SU-8 patterns superhydrophobic (apparent contact angle values of more than 150A degrees), and also to tune the water adhesion between extreme states, turning the surfaces from "non-sticky" to "sticky" while preserving their superhydrophobicity. The influence of the chemical properties and of the geometrical characteristics of the functionalized surfaces on the wetting properties is discussed within the frame of the theory. This simple method can find various applications in the fabrication of microfluidic devices, smart surfaces, and biotechnological and antifouling materials.
2013
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/217449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact