In this letter, we present a novel structure for light amplitude modulation based on a lateral p-i-n diode combined with a Bragg reflector which transforms the phase shift induced by the plasma dispersion effect in the intrinsic region of the diode into a voltage controlled variation of the reflectivity of the Bragg mirror. Numerical simulations show a modulation depth of 50% achieved in about 12 ns with a power dissipation of 4.0 mW and an insertion loss of 1.0 dB. The device is demonstrated to be very attractive in terms of power dissipation as compared to a Mach-Zehnder interferometer occupying the same area on chip. © 1997 American Institute of Physics.

An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide

1997

Abstract

In this letter, we present a novel structure for light amplitude modulation based on a lateral p-i-n diode combined with a Bragg reflector which transforms the phase shift induced by the plasma dispersion effect in the intrinsic region of the diode into a voltage controlled variation of the reflectivity of the Bragg mirror. Numerical simulations show a modulation depth of 50% achieved in about 12 ns with a power dissipation of 4.0 mW and an insertion loss of 1.0 dB. The device is demonstrated to be very attractive in terms of power dissipation as compared to a Mach-Zehnder interferometer occupying the same area on chip. © 1997 American Institute of Physics.
1997
Amplitude modulation
Carrier concentration
Charge carriers
Computer simulation
Energy absorption
Mirrors
Phase shift
Phase transitions
Semiconducting silicon
Voltage control
Waveguides
Bragg reflector
Free carrier absorption
Mach-Zehnder interferometer
Plasma dispersion effect
Power dissipation
Silicon on insulator technology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/217667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? ND
social impact