The electrorotation technique was utilized to investigate the interactions between a mouse fibroblast cell line and zwitterionic liposomes formed by a natural phospholipid or cationic liposomes formulated with the same phospholipid and a cationic gemini surfactant. The application of this technique allowed an accurate characterization of the passive dielectric behavior of the plasmamembrane by the determination of its specific capacitance and conductance. Changes of these parameters, upon interaction with the liposomes, are related to variations in the structure and or in the transport properties of the membrane. Cells were exposed to both types of liposomes for 1 or 4 h. Electrorotation data showa dramatic reduction of the dielectric parameters of the plasma membrane after one hour treatment. After 4 h of treatment the effects are still observed only in the case of the cationic liposomes. Surprisingly, these same treatments did not cause a relevant biological damage as assessed by standard viability tests. A detailed discussion to rationalize this phenomenon is presented.

Interactions of DMPC and DMPC/gemini liposomes with the cell membrane investigated by electrorotation

C Bombelli;F Bordi;G Mancini;
2013

Abstract

The electrorotation technique was utilized to investigate the interactions between a mouse fibroblast cell line and zwitterionic liposomes formed by a natural phospholipid or cationic liposomes formulated with the same phospholipid and a cationic gemini surfactant. The application of this technique allowed an accurate characterization of the passive dielectric behavior of the plasmamembrane by the determination of its specific capacitance and conductance. Changes of these parameters, upon interaction with the liposomes, are related to variations in the structure and or in the transport properties of the membrane. Cells were exposed to both types of liposomes for 1 or 4 h. Electrorotation data showa dramatic reduction of the dielectric parameters of the plasma membrane after one hour treatment. After 4 h of treatment the effects are still observed only in the case of the cationic liposomes. Surprisingly, these same treatments did not cause a relevant biological damage as assessed by standard viability tests. A detailed discussion to rationalize this phenomenon is presented.
2013
Istituto per i Sistemi Biologici - ISB (ex IMC)
Liposomes
Cell survival
Plasma membrane
Electrorotation
Gemini surfactant
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/218891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact