A procedure for fabrication of photomasks on photographic films with minimum feature achievable of about 20 um, which are particularly suitable for the fast prototyping of microfluidic devices, has been improved. We used a commercial photographic enlarger in reverse mode obtaining 10:1 reduction factor with error less than 1%. Masks have been characterized by optical transmission measurement and contact profilometry: the exposed region completely absorbs light in the wavelength region explored, while the non-exposed region is transparent from 350 nm on; the average film thickness is of 410 nm and its roughness is about 120 nm. A PDMS microfluidic device has been realized and tested in order to prove the effectiveness of designed photomasks used with the common UV light box.
Photomasks Fabrication Based on Optical Reduction for Microfluidic Applications
Luca De Stefano;Mario Medugno
2013
Abstract
A procedure for fabrication of photomasks on photographic films with minimum feature achievable of about 20 um, which are particularly suitable for the fast prototyping of microfluidic devices, has been improved. We used a commercial photographic enlarger in reverse mode obtaining 10:1 reduction factor with error less than 1%. Masks have been characterized by optical transmission measurement and contact profilometry: the exposed region completely absorbs light in the wavelength region explored, while the non-exposed region is transparent from 350 nm on; the average film thickness is of 410 nm and its roughness is about 120 nm. A PDMS microfluidic device has been realized and tested in order to prove the effectiveness of designed photomasks used with the common UV light box.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.