The evolution of the structure and of the hydrogen bonding configuration in hydrogenated a-Si/a-Ge multilayers prepared by RF sputtering is analyzed as a function of annealing. Single layers are also investigated to better evaluate the H behavior. IR absorption measurements show that H is released from its bonds to Si and Ge upon annealing. The mono-hydrides already disappear to a large extent for low annealing times (1 and 4 h), being replaced by di-hydrides, especially in the case of Si. For 10 h annealing both mono- and di-hydrides are almost completely destroyed. At the same time surface blisters form which, for the same annealing conditions, increase in size with increasing incorporated H in the as-deposited sample. It is concluded that the blisters in the multilayers are due to the trapping of the released H in cavities that increase in size upon annealing. The enlarged inner surface of the cavities is the candidate site for the formation of the di-hydrides at low annealing times, i.e., when the thermal energy supplied by the annealing is still insufficient to break all of them.

Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers

2013

Abstract

The evolution of the structure and of the hydrogen bonding configuration in hydrogenated a-Si/a-Ge multilayers prepared by RF sputtering is analyzed as a function of annealing. Single layers are also investigated to better evaluate the H behavior. IR absorption measurements show that H is released from its bonds to Si and Ge upon annealing. The mono-hydrides already disappear to a large extent for low annealing times (1 and 4 h), being replaced by di-hydrides, especially in the case of Si. For 10 h annealing both mono- and di-hydrides are almost completely destroyed. At the same time surface blisters form which, for the same annealing conditions, increase in size with increasing incorporated H in the as-deposited sample. It is concluded that the blisters in the multilayers are due to the trapping of the released H in cavities that increase in size upon annealing. The enlarged inner surface of the cavities is the candidate site for the formation of the di-hydrides at low annealing times, i.e., when the thermal energy supplied by the annealing is still insufficient to break all of them.
2013
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Amorphous Si
Hydrogen
IR spectroscopy
AFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/219342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact