In microscopy, high magnifications are achievable for investigating micro-objects but the paradigm is that higher is the required magnification, lower is the depth of focus. For an object having a three-dimensional (3D) complex shape only a portion of it appears in good focus to the observer who is essentially looking at a single image plane. Actually, two approaches exist to obtain an extended focused image (EFI), both having severe limitations since the first requires mechanical scanning while the other one requires specially designed optics. We demonstrate that an EFI of an object can be obtained through digital holography (DH) without any mechanical scanning or special optical components. The conceptual novelty of the proposed approach lies in the fact that it is possible to completely exploit the unique feature of DH in extracting all the information content stored in hologram, amplitude and phase, to extend the depth of focus.

3D imaging with large focus extension by a coherent optical microscope

P Ferraro;S Grilli;G Coppola;
2006

Abstract

In microscopy, high magnifications are achievable for investigating micro-objects but the paradigm is that higher is the required magnification, lower is the depth of focus. For an object having a three-dimensional (3D) complex shape only a portion of it appears in good focus to the observer who is essentially looking at a single image plane. Actually, two approaches exist to obtain an extended focused image (EFI), both having severe limitations since the first requires mechanical scanning while the other one requires specially designed optics. We demonstrate that an EFI of an object can be obtained through digital holography (DH) without any mechanical scanning or special optical components. The conceptual novelty of the proposed approach lies in the fact that it is possible to completely exploit the unique feature of DH in extracting all the information content stored in hologram, amplitude and phase, to extend the depth of focus.
2006
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
[object Object
[object Object
[object Object
[object Object
[object Object
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/220057
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact