Information on the effects of crystallization upon the structure of liver alcohol dehydrogenase from horse is obtained from a comparison of the phosphorescence properties of its tryptophan residues in solution and in the crystalline state. In the crystalline state the red shift in the phosphorescence spectrum of the solvent-exposed Trp-15 attests to a decreased polarity of its environment consistent with its shielding away from the aqueous solvent probably through its involvement in an intermolecular contact. On the other hand, the triplet-state lifetime of Trp-314 which is buried deeply in the coenzyme-binding domain demonstrates that the flexibility of this region of the macromolecule is unaffected by crystallization; a conclusion supported also by the similarity in the rate of oxygen quenching of its phosphorescence. Given that lattice constraints strongly inhibit large-scale conformational changes these results allow us to identify the average solution structure with the 'open' conformer determined crystallographically. © 1988.
Tryptophan phosphorescence and the conformation of liver alcohol dehydrogenase in solution and in the crystalline state
Gabellieri E;Gualtieri;
1988
Abstract
Information on the effects of crystallization upon the structure of liver alcohol dehydrogenase from horse is obtained from a comparison of the phosphorescence properties of its tryptophan residues in solution and in the crystalline state. In the crystalline state the red shift in the phosphorescence spectrum of the solvent-exposed Trp-15 attests to a decreased polarity of its environment consistent with its shielding away from the aqueous solvent probably through its involvement in an intermolecular contact. On the other hand, the triplet-state lifetime of Trp-314 which is buried deeply in the coenzyme-binding domain demonstrates that the flexibility of this region of the macromolecule is unaffected by crystallization; a conclusion supported also by the similarity in the rate of oxygen quenching of its phosphorescence. Given that lattice constraints strongly inhibit large-scale conformational changes these results allow us to identify the average solution structure with the 'open' conformer determined crystallographically. © 1988.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.