The phosphorescence spectra of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus in an aqueous glass show distinct 0,0 vibrational bands with peaks at 406.5 and 410.5 nm.. With the aid of external heavy-atom perturbation of iodide and the thermal quenching profile, it is concluded that although both chromophores are effectively buried, only one, viz., the 406.5 nm component, is embedded in a sufficiently rigid core of the protein to phosphoresce in fluid solutions at room temperature. From inspection of the crystallographic structure is it evident that only Trp-310 embedded in the ?-sheet of the catalytic domain may satisfy the requirements of a long triplet-state lifetime and slow migration of O2 to its site. This identification confirms previous analysis of the phosphorescence properties of the enzymes from yeast, pig and rabbit muscle.

Phosphorescence properties of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus

Gabellieri E;
1989-01-01

Abstract

The phosphorescence spectra of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus in an aqueous glass show distinct 0,0 vibrational bands with peaks at 406.5 and 410.5 nm.. With the aid of external heavy-atom perturbation of iodide and the thermal quenching profile, it is concluded that although both chromophores are effectively buried, only one, viz., the 406.5 nm component, is embedded in a sufficiently rigid core of the protein to phosphoresce in fluid solutions at room temperature. From inspection of the crystallographic structure is it evident that only Trp-310 embedded in the ?-sheet of the catalytic domain may satisfy the requirements of a long triplet-state lifetime and slow migration of O2 to its site. This identification confirms previous analysis of the phosphorescence properties of the enzymes from yeast, pig and rabbit muscle.
1989
glyceraldehyde 3 phosphate dehydrogenase
bacillus stearothermophilus
nonhuman
phosphorescence
priority journal
Bacillus stearothermophilus
Glyceraldehyde-3-Phosphate Dehydrogenases
Kinetics
Luminescence
Thermodynamics
Tryptophan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/220898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact