In this paper, we propose an analytical methodology for attributing provenance to natural lapis lazuli pigments employed in works of art, and for distinguishing whether they are of natural or synthetic origin. A multitechnique characterization of lazurite and accessory phases in lapis lazuli stones from Afghan, Siberian and Chilean quarries, on the pigments obtained by their purification, and on synthetic ultramarine pigments was performed. According to the results obtained, infrared spectroscopy is not a suitable technique for distinguishing the provenance of lapis lazuli, but a particular absorbance band makes it relatively easy to determine whether it is of natural or synthetic origin. On the other hand, EDS elemental composition and XRD patterns show the presence of specific mineral phases associated with specific lapis lazuli sources, and can be used to distinguish the provenance of the stones as well as-albeit to a lesser extent-the corresponding purified blue pigments. In contrast, FEG-SEM observations clearly show different stone textures depending on their provenance, although these distinctive features do not persist in the corresponding pigments. PCA analyses of EDS data allow Afghan lapis lazuli stone to be distinguished from Chilean and Siberian ones, and can distinguish between the pigments resulting from their purification as well as synthetic blue ones. Although this methodology was developed using a limited number of samples, it was tested on lapis lazuli pigments collected from three paintings (from the fourteenth to sixteenth centuries) in order to perform a preliminary validation of the technique, and based on the results, the provenance of the blue pigments employed in those artworks is proposed. Finally, upon analytically monitoring the process of purifying lapis lazuli to obtain the corresponding pigments, it was found that ion-exchange reactions occur between the alkali modifiers of silicate/aluminosilicate phases and free carboxylic acids present in the doughy mixture of natural terpenes and ground stone, namely pastello. These reactions favor (i) the retention of silicate phases in the organic mixture and (ii) the selective extraction of lazurite due to the formation of Bronsted acidic sites [Al(OH)Si], which are responsible for its high hydrophilicity in comparison to the one of the other species present in the lapis lazuli stone.
Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art
Favaro M;Bianchin S;Gambirasi A
2012
Abstract
In this paper, we propose an analytical methodology for attributing provenance to natural lapis lazuli pigments employed in works of art, and for distinguishing whether they are of natural or synthetic origin. A multitechnique characterization of lazurite and accessory phases in lapis lazuli stones from Afghan, Siberian and Chilean quarries, on the pigments obtained by their purification, and on synthetic ultramarine pigments was performed. According to the results obtained, infrared spectroscopy is not a suitable technique for distinguishing the provenance of lapis lazuli, but a particular absorbance band makes it relatively easy to determine whether it is of natural or synthetic origin. On the other hand, EDS elemental composition and XRD patterns show the presence of specific mineral phases associated with specific lapis lazuli sources, and can be used to distinguish the provenance of the stones as well as-albeit to a lesser extent-the corresponding purified blue pigments. In contrast, FEG-SEM observations clearly show different stone textures depending on their provenance, although these distinctive features do not persist in the corresponding pigments. PCA analyses of EDS data allow Afghan lapis lazuli stone to be distinguished from Chilean and Siberian ones, and can distinguish between the pigments resulting from their purification as well as synthetic blue ones. Although this methodology was developed using a limited number of samples, it was tested on lapis lazuli pigments collected from three paintings (from the fourteenth to sixteenth centuries) in order to perform a preliminary validation of the technique, and based on the results, the provenance of the blue pigments employed in those artworks is proposed. Finally, upon analytically monitoring the process of purifying lapis lazuli to obtain the corresponding pigments, it was found that ion-exchange reactions occur between the alkali modifiers of silicate/aluminosilicate phases and free carboxylic acids present in the doughy mixture of natural terpenes and ground stone, namely pastello. These reactions favor (i) the retention of silicate phases in the organic mixture and (ii) the selective extraction of lazurite due to the formation of Bronsted acidic sites [Al(OH)Si], which are responsible for its high hydrophilicity in comparison to the one of the other species present in the lapis lazuli stone.File | Dimensione | Formato | |
---|---|---|---|
prod_189154-doc_40434.pdf
solo utenti autorizzati
Descrizione: Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art
Dimensione
706.06 kB
Formato
Adobe PDF
|
706.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.