Lead zirconate titanate (PZT) thin films in the range of 35-90 nm were deposited on a sapphire (1000) substrate using the sol-gel preparation method by diluting a PZT solution at different levels and using dichloromethane as the solvent. The microstructure, surface morphology, and stoichiometry of the films were studied by x-ray diffraction, atomic force microscopy, and Rutherford backscattering. Very smooth films characterized by single perovskite and mixed pyrochlore/perovskite polycrystalline phases were obtained and their optical properties were studied by spectroscopic ellipsometry in the ultraviolet-visible-near-infrared region. The refractive index was evaluated by analyzing the spectroscopic ellipsometry spectra. The ellipsometric data were also used to evaluate the bandgap energy of the films. The results show that the optical parameters of the films depend on the crystalline structure and demonstrate that higher bandgaps are obtained for perovskite films as compared to pyrochlore or mixed pyrochlore/perovskite structures. Data also confirm the higher bandgap of the amorphous structure compared to the polycrystalline PZT phases.

Optical and structural properties of low thickness lead zirconate titanate films on sapphire substrates prepared via sol-gel method

Natali M;
2012

Abstract

Lead zirconate titanate (PZT) thin films in the range of 35-90 nm were deposited on a sapphire (1000) substrate using the sol-gel preparation method by diluting a PZT solution at different levels and using dichloromethane as the solvent. The microstructure, surface morphology, and stoichiometry of the films were studied by x-ray diffraction, atomic force microscopy, and Rutherford backscattering. Very smooth films characterized by single perovskite and mixed pyrochlore/perovskite polycrystalline phases were obtained and their optical properties were studied by spectroscopic ellipsometry in the ultraviolet-visible-near-infrared region. The refractive index was evaluated by analyzing the spectroscopic ellipsometry spectra. The ellipsometric data were also used to evaluate the bandgap energy of the films. The results show that the optical parameters of the films depend on the crystalline structure and demonstrate that higher bandgaps are obtained for perovskite films as compared to pyrochlore or mixed pyrochlore/perovskite structures. Data also confirm the higher bandgap of the amorphous structure compared to the polycrystalline PZT phases.
2012
CHIMICA INORGANICA E DELLE SUPERFICI
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Semiconducting lead compounds
Amorphous materials
Lead zirconate titanate thin films
File in questo prodotto:
File Dimensione Formato  
prod_189196-doc_40455.pdf

solo utenti autorizzati

Descrizione: Optical and structural properties of low thickness lead zirconate titanate films ...
Dimensione 2.1 MB
Formato Adobe PDF
2.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/221407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact