We investigate the Seebeck effect in RFeAsO (R=rare earth) compounds as a function of temperature and magnetic field up to 30 T. The Seebeck curves are characterized by a broad negative bump around 50 K, which is sample dependent and strongly enhanced by the application of a magnetic field. A model for the temperature and field dependence of the magnon drag contribution to the Seebeck effect by antiferromagnetic (AFM) spin fluctuation is developed. It accounts for the magnitude and scaling properties of such bump feature in our experimental data in LaFeAsO. This analysis accounts for the apparent inconsistency of literature Seebeck effect data on these compounds and has the potential to extract precious information on the coupling between electrons and AFM spin fluctuations in these parent compound systems, with implications on the pairing mechanism of the related superconducting compounds.

Magneto-Seebeck effect in REFeAsO (RE=rare earth) compounds: probing the magnon drag scenario

Caglieris F;Braggio A;Pallecchi I;Provino A;Lamura G;Manfrinetti P;Putti M
2014

Abstract

We investigate the Seebeck effect in RFeAsO (R=rare earth) compounds as a function of temperature and magnetic field up to 30 T. The Seebeck curves are characterized by a broad negative bump around 50 K, which is sample dependent and strongly enhanced by the application of a magnetic field. A model for the temperature and field dependence of the magnon drag contribution to the Seebeck effect by antiferromagnetic (AFM) spin fluctuation is developed. It accounts for the magnitude and scaling properties of such bump feature in our experimental data in LaFeAsO. This analysis accounts for the apparent inconsistency of literature Seebeck effect data on these compounds and has the potential to extract precious information on the coupling between electrons and AFM spin fluctuations in these parent compound systems, with implications on the pairing mechanism of the related superconducting compounds.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/221673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact