Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.

MicroRNA-133 controls cardiac myocyte hypertrophy

Catalucci D;Bang ML;Condorelli G
2007

Abstract

Growing evidence indicates that microRNAs (miRNAs or miRs) are involved in basic cell functions and oncogenesis. Here we report that miR-133 has a critical role in determining cardiomyocyte hypertrophy. We observed decreased expression of both miR-133 and miR-1, which belong to the same transcriptional unit, in mouse and human models of cardiac hypertrophy. In vitro overexpression of miR-133 or miR-1 inhibited cardiac hypertrophy. In contrast, suppression of miR-133 by 'decoy' sequences induced hypertrophy, which was more pronounced than that after stimulation with conventional inducers of hypertrophy. In vivo inhibition of miR-133 by a single infusion of an antagomir caused marked and sustained cardiac hypertrophy. We identified specific targets of miR-133: RhoA, a GDP-GTP exchange protein regulating cardiac hypertrophy; Cdc42, a signal transduction kinase implicated in hypertrophy; and Nelf-A/WHSC2, a nuclear factor involved in cardiogenesis. Our data show that miR-133, and possibly miR-1, are key regulators of cardiac hypertrophy, suggesting their therapeutic application in heart disease.
2007
Istituto di Ricerca Genetica e Biomedica - IRGB
scompenso cardiaco
microRNA
ipertrofia cardiaca
traduzione del segnale
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact