Total Internal Reflection Digital Holographic Microscopy (TIRDHM) is recognized to be a powerful tool for retrieving quantitative phase images of cell-substrate interfaces, adhesions, and tissue structures close to the prism surface. In this Letter, we develop an improved TIRDHM system, taking advantage of a refractive index mismatch between the prism and the sample substrate, to allow phase-shifting DH with just a single-beam interferometric configuration. Instead of the traditional off-axis method, phase-shift method is used to retrieve amplitude and phase images in coherent light and TIR modality. Essentially, the substrate-prism interface acts like a beam splitter generating a reference beam, where the phase-shift dependence on the incident angle is exploited in this common-path configuration. With the aim to demonstrate the technique's validity, some experiments are performed to establish the advantage of this compact and simple configuration, in which the reference arm in the setup is avoided. (C) 2014 Optical Society of America

Common-path configuration in total internal reflection digital holography microscopy

Matrecano Marcella;Paturzo Melania;Ferraro Pietro
2014

Abstract

Total Internal Reflection Digital Holographic Microscopy (TIRDHM) is recognized to be a powerful tool for retrieving quantitative phase images of cell-substrate interfaces, adhesions, and tissue structures close to the prism surface. In this Letter, we develop an improved TIRDHM system, taking advantage of a refractive index mismatch between the prism and the sample substrate, to allow phase-shifting DH with just a single-beam interferometric configuration. Instead of the traditional off-axis method, phase-shift method is used to retrieve amplitude and phase images in coherent light and TIR modality. Essentially, the substrate-prism interface acts like a beam splitter generating a reference beam, where the phase-shift dependence on the incident angle is exploited in this common-path configuration. With the aim to demonstrate the technique's validity, some experiments are performed to establish the advantage of this compact and simple configuration, in which the reference arm in the setup is avoided. (C) 2014 Optical Society of America
2014
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Nazionale di Ottica - INO
surface-plasmon-resonance
phase microscopy
imaging-system
interferometry
microfluidics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact