Pulsed laser writing of graphitic electrodes in diamond is a promising technique for innovative particle detectors. Although of great relevance in 3D fabrication, the processes involved in sub-bandgap bulk irradiation are still not well understood. In this work, Raman imaging is exploited to correlate resistivity and graphitic content in 5-10 pm-thick electrodes, obtained both in the domains of femtoseconds and of nanoseconds of pulse duration. A wide interval of resistivities (60-900 m Omega cm), according to the irradiation technique employed, are correlated with an sp(2) content of the modified material ranging over a factor 2.5. The stress distribution (maximum of about 10 GPa) and the presence of nanostructured sp(3) material around the graphitic columns have also been studied by Raman spectroscopy, and a rationale for the conductive behavior of the material is presented in terms of the thermodynamics of the process. (C) 2014 Elsevier B.V. All rights reserved.

Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors

Lagomarsino S;Bellini M;Fanetti S;Gorelli F;Santoro M;
2014

Abstract

Pulsed laser writing of graphitic electrodes in diamond is a promising technique for innovative particle detectors. Although of great relevance in 3D fabrication, the processes involved in sub-bandgap bulk irradiation are still not well understood. In this work, Raman imaging is exploited to correlate resistivity and graphitic content in 5-10 pm-thick electrodes, obtained both in the domains of femtoseconds and of nanoseconds of pulse duration. A wide interval of resistivities (60-900 m Omega cm), according to the irradiation technique employed, are correlated with an sp(2) content of the modified material ranging over a factor 2.5. The stress distribution (maximum of about 10 GPa) and the presence of nanostructured sp(3) material around the graphitic columns have also been studied by Raman spectroscopy, and a rationale for the conductive behavior of the material is presented in terms of the thermodynamics of the process. (C) 2014 Elsevier B.V. All rights reserved.
2014
Istituto Nazionale di Ottica - INO
Diamond graphitization
Raman imaging
3D detectors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact