A new nanostructured alpha-Fe2O3 photoelectrode synthesized through plasma-enhanced chemical vapor deposition (PE-CVD) is presented. The alpha-Fe2O3 films consist of nanoplatelets with (001) crystallographic planes strongly oriented perpendicular to the conductive glass surface. This hematite morphology was never obtained before and is strictly linked to the method being used for its production. Structural, electronic, and photocurrent measurements are employed to disclose the nanoscale features of the photoanodes and their relationships with the generated photocurrent. alpha-Fe2O3 films have a hierarchical morphology consisting of nanobranches (width similar to 10 nm, length similar to 50 nm) that self-organize in plume-like nanoplatelets (350-700 nm in length). The amount of precursor used in the PE-CVD process mainly affects the nanoplatelets dimension, the platelets density, the roughness, and the photoelectrochemical (PEC) activity. The highest photocurrent (j = 1.39 mA/cm(2) at 1.55 V-RHE) is shown by the photoanodes with the best balance between the platelets density and roughness. The so obtained hematite hierarchical morphology assures good photocurrent performance and appears to be an ideal platform for the construction of customized multilayer architecture for PEC water splitting.

Hierarchical Hematite Nanoplatelets for Photoelectrochemical Water Splitting

Marelli Marcello;Naldoni Alberto;Virgili Tersilla;Scavia Guido;Psaro Rinaldo;Dal Santo Vladimiro
2014

Abstract

A new nanostructured alpha-Fe2O3 photoelectrode synthesized through plasma-enhanced chemical vapor deposition (PE-CVD) is presented. The alpha-Fe2O3 films consist of nanoplatelets with (001) crystallographic planes strongly oriented perpendicular to the conductive glass surface. This hematite morphology was never obtained before and is strictly linked to the method being used for its production. Structural, electronic, and photocurrent measurements are employed to disclose the nanoscale features of the photoanodes and their relationships with the generated photocurrent. alpha-Fe2O3 films have a hierarchical morphology consisting of nanobranches (width similar to 10 nm, length similar to 50 nm) that self-organize in plume-like nanoplatelets (350-700 nm in length). The amount of precursor used in the PE-CVD process mainly affects the nanoplatelets dimension, the platelets density, the roughness, and the photoelectrochemical (PEC) activity. The highest photocurrent (j = 1.39 mA/cm(2) at 1.55 V-RHE) is shown by the photoanodes with the best balance between the platelets density and roughness. The so obtained hematite hierarchical morphology assures good photocurrent performance and appears to be an ideal platform for the construction of customized multilayer architecture for PEC water splitting.
2014
Istituto di fotonica e nanotecnologie - IFN
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
hierarchical structures
hematite
photocatalysis
water splitting
solar fuels
File in questo prodotto:
File Dimensione Formato  
prod_287060-doc_82393.pdf

solo utenti autorizzati

Descrizione: ACS Appl. Mater. Interfaces 2014, 6, 11997
Dimensione 8.64 MB
Formato Adobe PDF
8.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/222856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact