Low aqueous solubility of porphyrin-based photosensitizers hampers their clinical use in photodynamic therapy because of complex delivery. In this study, we explore meso-tetra(m-hydroxyphenyl)-21,23H-porphyrin (mTHPP), a potent photosensitizer, covalently attached to ?-cyclodextrin (CD-mTHPP) with a focus on topical delivery and cellular uptake. The photophysical properties of CD-mTHPP were examined using steady-state fluorescence and lifetime measurements verifying increased aqueous solubility. Confocal and fluorescence lifetime imaging microscopy on human squamous carcinoma cells (A431) evidenced a cytoplasmic uptake of CD-mTHPP in predominantly monomeric form. CD-mTHPP was also delivered to human skin ex vivo and the skin penetration was assessed using two-photon fluorescence microscopy. The results indicated that CD-mTHPP exhibits improved skin distribution compared to mTHPP alone using aqueous vehicles. Thus the CD-mTHPP conjugate demonstrates improved biodistribution ex vivo compared to mTHPP and is a promising multimodal system for photodynamic therapy. This journal is © the Partner Organisations 2014.
Photophysics and ex vivo biodistribution of b-cyclodextrin-meso- tetra(m-hydroxyphenyl)porphyrin conjugate for biomedical applications
Manet Ilse;
2014
Abstract
Low aqueous solubility of porphyrin-based photosensitizers hampers their clinical use in photodynamic therapy because of complex delivery. In this study, we explore meso-tetra(m-hydroxyphenyl)-21,23H-porphyrin (mTHPP), a potent photosensitizer, covalently attached to ?-cyclodextrin (CD-mTHPP) with a focus on topical delivery and cellular uptake. The photophysical properties of CD-mTHPP were examined using steady-state fluorescence and lifetime measurements verifying increased aqueous solubility. Confocal and fluorescence lifetime imaging microscopy on human squamous carcinoma cells (A431) evidenced a cytoplasmic uptake of CD-mTHPP in predominantly monomeric form. CD-mTHPP was also delivered to human skin ex vivo and the skin penetration was assessed using two-photon fluorescence microscopy. The results indicated that CD-mTHPP exhibits improved skin distribution compared to mTHPP alone using aqueous vehicles. Thus the CD-mTHPP conjugate demonstrates improved biodistribution ex vivo compared to mTHPP and is a promising multimodal system for photodynamic therapy. This journal is © the Partner Organisations 2014.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.