The combined effects of firing temperature and soaking time on the microstructure of iron-rich porous ceramics have been studied by 57Fe-Mössbauer spectroscopy and 2D 1H nuclear magnetic resonance (NMR) relaxometry using a single-sided probe. Examining water-saturated ceramics using the relaxation correlation method, where longitudinal (T 1) and transverse (T 2) relaxation times are measured concurrently, provides information about firing-induced changes in both porosity (related to T 1) and magnetic properties (related to T 2). Comparing the information obtained from 1H-NMR analyses with that obtained from Mössbauer spectroscopy (which characterizes changes in iron-bearing species) shows that the T 1-T 2 NMR correlation technique is very sensitive to even subtle modifications in the magnetic behavior of Fe-bearing species. Moreover, the single-sided NMR approach allows us to perform millimeter-scale depth-resolved measurements, which can be used to non-invasively study the microstructural heterogeneities associated with non-uniform firing effects inside ceramics. This is in contrast to Mössbauer spectroscopy, which requires that the ceramic samples be ground.
Effects of time and temperature of firing on Fe-rich ceramics studied by Mossbauer spectroscopy and two-dimensional H-1-nuclear magnetic resonance relaxometry
Nodari L;Tudisca V
2012
Abstract
The combined effects of firing temperature and soaking time on the microstructure of iron-rich porous ceramics have been studied by 57Fe-Mössbauer spectroscopy and 2D 1H nuclear magnetic resonance (NMR) relaxometry using a single-sided probe. Examining water-saturated ceramics using the relaxation correlation method, where longitudinal (T 1) and transverse (T 2) relaxation times are measured concurrently, provides information about firing-induced changes in both porosity (related to T 1) and magnetic properties (related to T 2). Comparing the information obtained from 1H-NMR analyses with that obtained from Mössbauer spectroscopy (which characterizes changes in iron-bearing species) shows that the T 1-T 2 NMR correlation technique is very sensitive to even subtle modifications in the magnetic behavior of Fe-bearing species. Moreover, the single-sided NMR approach allows us to perform millimeter-scale depth-resolved measurements, which can be used to non-invasively study the microstructural heterogeneities associated with non-uniform firing effects inside ceramics. This is in contrast to Mössbauer spectroscopy, which requires that the ceramic samples be ground.File | Dimensione | Formato | |
---|---|---|---|
prod_196200-doc_112246.pdf
solo utenti autorizzati
Descrizione: Effects of time and temperature of firing on Fe-rich ceramics studied by Mössbauer spectroscopy...
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.