Transient liquid phase (TLP) bonding enables joining at lower temperatures than traditional bonding techniques and preserves the potential for high-temperature applications, making it particularly attractive for joining ultra-high-temperature ceramics (UHTCs) such as carbides and borides. The feasibility of a TLP joint between "pure" carbides has been recently demonstrated. The present study examines the interactions that occur between undoped HfC or MoSi2-doped HfC and a Ni/Nb/Ni multilayer interlayer during TLP bonding. Bonding is performed at 1400 degrees C for 30 min in a high-vacuum furnace. SEM-EDS characterization shows that the reaction layer formed at the interlayer/ceramic interface contains mixed carbides and depending upon the ceramic, Ni-Nb-Hf, or Ni-Nb-Hf-Si, or Ni-Nb-Si alloys. Nanoindentation tests traversing the reaction layer between the bulk ceramic and Nb foil midplane also show a clear transition zone across which the indentation modulus and hardness vary. Crack-free joints have been obtained with undoped HfC. The addition of 5 vol% MoSi2 introduces small (<5 mu m long) isolated cracks within the reaction layer, whereas with 15 vol% MoSi2 added, cracking was pervasive within the reaction layer. When the reaction layer exceeds a critical thickness, as in the case of the bond obtained with HfC doped with 15 vol% MoSi2, residual stresses become sufficiently large to cause extensive cracking and bond failure. The results suggest a need to characterize and balance the positive role of additives on sintering with the potentially deleterious role they may have on joining.

Transient liquid phase bonding of HfC-based ceramics

Esposito, Laura;Sciti, Diletta;Silvestroni, Laura;Melandri, Cesare;Guicciardi o Guizzardi, Stefano;
2014

Abstract

Transient liquid phase (TLP) bonding enables joining at lower temperatures than traditional bonding techniques and preserves the potential for high-temperature applications, making it particularly attractive for joining ultra-high-temperature ceramics (UHTCs) such as carbides and borides. The feasibility of a TLP joint between "pure" carbides has been recently demonstrated. The present study examines the interactions that occur between undoped HfC or MoSi2-doped HfC and a Ni/Nb/Ni multilayer interlayer during TLP bonding. Bonding is performed at 1400 degrees C for 30 min in a high-vacuum furnace. SEM-EDS characterization shows that the reaction layer formed at the interlayer/ceramic interface contains mixed carbides and depending upon the ceramic, Ni-Nb-Hf, or Ni-Nb-Hf-Si, or Ni-Nb-Si alloys. Nanoindentation tests traversing the reaction layer between the bulk ceramic and Nb foil midplane also show a clear transition zone across which the indentation modulus and hardness vary. Crack-free joints have been obtained with undoped HfC. The addition of 5 vol% MoSi2 introduces small (<5 mu m long) isolated cracks within the reaction layer, whereas with 15 vol% MoSi2 added, cracking was pervasive within the reaction layer. When the reaction layer exceeds a critical thickness, as in the case of the bond obtained with HfC doped with 15 vol% MoSi2, residual stresses become sufficiently large to cause extensive cracking and bond failure. The results suggest a need to characterize and balance the positive role of additives on sintering with the potentially deleterious role they may have on joining.
2014
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
Istituto di Scienze Marine - ISMAR
File in questo prodotto:
File Dimensione Formato  
prod_293003-doc_84040.pdf

solo utenti autorizzati

Descrizione: Transient liquid phase bonding of HfC-based ceramics
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 988.56 kB
Formato Adobe PDF
988.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/223717
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact