Transient liquid phase (TLP) bonding enables joining at lower temperatures than traditional bonding techniques and preserves the potential for high-temperature applications, making it particularly attractive for joining ultra-high-temperature ceramics (UHTCs) such as carbides and borides. The feasibility of a TLP joint between "pure" carbides has been recently demonstrated. The present study examines the interactions that occur between undoped HfC or MoSi2-doped HfC and a Ni/Nb/Ni multilayer interlayer during TLP bonding. Bonding is performed at 1400 degrees C for 30 min in a high-vacuum furnace. SEM-EDS characterization shows that the reaction layer formed at the interlayer/ceramic interface contains mixed carbides and depending upon the ceramic, Ni-Nb-Hf, or Ni-Nb-Hf-Si, or Ni-Nb-Si alloys. Nanoindentation tests traversing the reaction layer between the bulk ceramic and Nb foil midplane also show a clear transition zone across which the indentation modulus and hardness vary. Crack-free joints have been obtained with undoped HfC. The addition of 5 vol% MoSi2 introduces small (<5 mu m long) isolated cracks within the reaction layer, whereas with 15 vol% MoSi2 added, cracking was pervasive within the reaction layer. When the reaction layer exceeds a critical thickness, as in the case of the bond obtained with HfC doped with 15 vol% MoSi2, residual stresses become sufficiently large to cause extensive cracking and bond failure. The results suggest a need to characterize and balance the positive role of additives on sintering with the potentially deleterious role they may have on joining.
Transient liquid phase bonding of HfC-based ceramics
Esposito, Laura;Sciti, Diletta;Silvestroni, Laura;Melandri, Cesare;Guicciardi o Guizzardi, Stefano;
2014
Abstract
Transient liquid phase (TLP) bonding enables joining at lower temperatures than traditional bonding techniques and preserves the potential for high-temperature applications, making it particularly attractive for joining ultra-high-temperature ceramics (UHTCs) such as carbides and borides. The feasibility of a TLP joint between "pure" carbides has been recently demonstrated. The present study examines the interactions that occur between undoped HfC or MoSi2-doped HfC and a Ni/Nb/Ni multilayer interlayer during TLP bonding. Bonding is performed at 1400 degrees C for 30 min in a high-vacuum furnace. SEM-EDS characterization shows that the reaction layer formed at the interlayer/ceramic interface contains mixed carbides and depending upon the ceramic, Ni-Nb-Hf, or Ni-Nb-Hf-Si, or Ni-Nb-Si alloys. Nanoindentation tests traversing the reaction layer between the bulk ceramic and Nb foil midplane also show a clear transition zone across which the indentation modulus and hardness vary. Crack-free joints have been obtained with undoped HfC. The addition of 5 vol% MoSi2 introduces small (<5 mu m long) isolated cracks within the reaction layer, whereas with 15 vol% MoSi2 added, cracking was pervasive within the reaction layer. When the reaction layer exceeds a critical thickness, as in the case of the bond obtained with HfC doped with 15 vol% MoSi2, residual stresses become sufficiently large to cause extensive cracking and bond failure. The results suggest a need to characterize and balance the positive role of additives on sintering with the potentially deleterious role they may have on joining.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_293003-doc_84040.pdf
solo utenti autorizzati
Descrizione: Transient liquid phase bonding of HfC-based ceramics
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
988.56 kB
Formato
Adobe PDF
|
988.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


